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Dot Product

Definitions
X1 Y1
X2 Y2

Let X = . and ¥ = . be vectors in R".
Xn Yn

1. The dot product of X and ¥ is

R F=x1y1 +Xoy2 + - Xnyn =X ¥.

2. The length or norm of X, denoted ||X|] is
[IX]| = 4/x3 +x3- +x2 =VX-X= VXX

3. X is called a unit vector if ||X|| = 1.
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Theorem (Properties of length and the dot product)

Let X,¥,7Z € R", and let a € R. Then
1. X-§ =¥ -X (the dot product is commutative)
2. X-(y+7) =X-y+X-7Z (the dot product distributes over addition)
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Theorem (Properties of length and the dot product)
Let X,y,7Z € R", and let a € R. Then

1. X-§ =¥ -X (the dot product is commutative)
2. X-(y+7) =X-y+X-7Z (the dot product distributes over addition)
3. (ax) -y =a(xX-¥) =X- (ay)



Theorem (Properties of length and the dot product)
Let X,y,7Z € R", and let a € R. Then
1.

Xl

-

-¥ =¥ - X (the dot product is commutative)
-(¥+Z ¥ + X - Z (the dot product distributes over addition)

~

><l

2 +7Z X
3. (aX) -y =a(X-y) =X (ay)
4. ||)_('||2 =xX-X



Theorem (Properties of length and the dot product)
Let X,y,7Z € R", and let a € R. Then

1.

SRS

X-§¥ =¥ -X (the dot product is commutative)
X-(¥+72) =% ¥+ X-Z (the dot product distributes over addition)
%) §=a(-5) =% (af)

. |I¥]| > 0 with equality if and only if X = 0y,.



Theorem (Properties of length and the dot product)
Let X,y,7Z € R", and let a € R. Then

1. X-§ =¥ -X (the dot product is commutative)
X- ( +7Z) =X-§+X-Z (the dot product distributes over addition)
) ¥ =a(X-¥) =%-(ay)

—

. ||x||2 =% X

|[%]| > 0 with equality if and only if ¥ = O,.

.G’.U‘*‘;?"!\’

[[ax]| = [al [I]].



Example
Let X, ¥ € R". Then

1%+ 711
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suppose that there exists a vector X € R" for which X - fj = 0 for all j,
1 <j <k. Show that X = 0y,.
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X
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Problem

Let {ﬂ, B,..., Fk} € R" and suppose R" = span{ﬁ, f, ... ,ﬁ(}. Furthermore,
suppose that there exists a vector X € R" for which X - fj = 0 for all j,
1 <j <k. Show that X = 0y,.

Proof.
Write X = tiFl + tafg 4.4 tyfy for some t1,t2,...,tx € R (this is possible
because f1, fa, ..., fk span R”, is this representation unique?). Then
I®1* = %%
X (t 1 tafo 4+ tkfk)

= X (taf)) + R (bof2) + - + % (ticfi)

= 6E0)+FtaE )4+ (R i)

= t1(0) + t2(0) + - —l—tk(O) 0.



Problem

Let {ﬂ, B,..., Fk} € R" and suppose R" = span{ﬁ, f, ... ,ﬁ(}. Furthermore,
suppose that there exists a vector X € R" for which X - fj = 0 for all j,
1 <j <k. Show that X = 0y,.

Proof.
Write X = tiFl + tafg 4.4 tyfy for some t1,t2,...,tx € R (this is possible
because f1, fa, ..., fk span R”, is this representation unique?). Then
K = %%
X (t 1 tafo 4+ tkfk)
= R (tif) + X (tofa) + - + R+ (tichk)
= 6E0)+FtaE )4+ (R i)

t1(0) 4+ t2(0) 4 - - - 4+ ti(0) = 0.

Since ||¥||* = 0, ||%|| = 0. By the previous theorem, ||%|| = 0 if and only if
% = 0,. Therefore, X = 0y,. |
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Cauchy-Schwartz Inequality

Theorem (Cauchy-Schwartz Inequality)

If X, € R", then |X-¥| < |[X|| ||¥]| with equality if and only if {X, ¥} is
linearly dependent.

e X ¥
e TRl B §
yZ : Xl ¥
e \
e
A }
COS P = L, y> y}

{X, ¥} is linearly dependent <« X =1y, for somet € R.



Proof.
Let X,¥ € R" and t € R. Then

0<|t+5I

(tX+9) - (tX+7y)
= t°R-X4+2A-F+7-

6111 + 26(% - §) + |I¥]]°-
The quadratic t2|[%||* + 2t(X - ¥) + ||| in t is always nonnegative, so it

does not have distinct real roots. Thus, if we use the quadratic formula to
solve for t, the discriminant must be non-positive, i.e.,

A= (2%-3)" — 4lIRIP|F]1* < 0

Therefore, (2% - §)? < 4/|%]|?||¥||?. Since both sides of the inequality are
nonnegative, we can take (positive) square roots of both sides:

2% - 3| < 2[[x]] [I¥]]

Therefore, |X-§| < [[X]| ||¥]|. What remains is to show that |X-§| = ||X]| ||¥]|
if and only if {X, ¥} is linearly dependent. [ |



Proof. (continued)

First suppose that {X,y} is dependent. Then by symmetry (of X and ¥),
X = ky for some k € R. Hence

%5 = |(&3)-F] = [| [7:5] = [/ |I7]]*, and [RI{[7]] = k51| 171 = || 17/,
so [X- 3] = [IX] |[71l-

Conversely, suppose {X,¥} is independent; then tX + ¥ # 0, for all t € R, so
|[tX + ¥||> > 0 for all t € R. Thus the quadratic

£%[1%]1* + 26(% - §) + |[7]* > 0
so has no real roots. It follows that the the discriminant is negative, i.e.,

o \2 2112112112
(2%-9)" = 4[[XI7|I31I <0.

Therefore, (2% - §)? < 4||||?||7||?; taking square roots of both sides (they
are both nonnegative) and dividing by two gives us

-3 < KIS

showing that equality is impossible. |
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Proof.

[R+7° = E+7) F+9)



Corollary (Triangle Inequality T )
If X,§ € R, then [[X + ¥[| < [[X]] + [I¥]]-

Proof.

IR+7° = &+
= X



Corollary (Triangle Inequality T )
If X,§ € R, then [[X + ¥[| < [[X]] + [I¥]]-

Proof.

IR+ = E+7)
%

I
»l



Corollary (Triangle Inequality T )

IfX,5 € R", then ||+ || < K|+ [[71]

Proof.

1%+ 71°

A\

E+7) - E+7Y)
R RLR-F+TF

1+ 2% 7+ |I5]1°
1>+ 2/I%]| [|7]] + ||7]]* by the Cauchy Inequality



Corollary (Triangle Inequality T )
If X,§ € R, then [[X + ¥[| < [[X]] + [I¥]]-

Proof.

1%+ 71°

A\

(

X+5) X+79)

R RLR-F+TF

|
|
(

K12 4+ 2% - 7 + |72

IRI1* + 2/I%|| |7]| + [|7]|* by the Cauchy Inequality
- S 2

%[+ [IF11)°



Corollary (Triangle Inequality T )
If X,§ € R, then [[X + ¥[| < [[X]] + [I¥]]-

Proof.

IR+711° = E+9)-E+79)

RX+2R-F+7F

1+ 2% 7+ |I5]1°

1>+ 2/I%]| [|7]] + ||7]]* by the Cauchy Inequality
(1=l + [151)*.

Since both sides of the inequality are nonnegative, we take (positive) square
roots of both sides:

A\

X+ 11 < [IX]] + 1711
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Definition

If X, ¥ € R", then the distance between X and ¥ is defined as

dx,¥) = [[X =¥l

Theorem (Properties of the distance function)
Let X,¥,7Z € R". Then

1. d(%,7) > 0.

2. d(X,¥) = 0 if and only if X = §.



Definition
If X, ¥ € R", then the distance between X and ¥ is defined as

dx,¥) = [[X =¥l

Theorem (Properties of the distance function)
Let X,¥,Z € R". Then
1. d(%,7) > 0.
y¥) =0if and only if X =¥.
¥)



Definition

If X, ¥ € R", then the distance between X and ¥ is defined as

dx,¥) = [[X =¥l

Theorem (Properties of the distance function)

Let X,¥,7Z € R". Then
1. d(X,y) >0
2. d(X,¥) = 0 if and only if X = §.
3. d(X,¥) = d(¥,X).
4. d(%,%Z) < d%,¥) + d(¥,2) (Triangle Inequality II).



Definition
If X, ¥ € R", then the distance between X and ¥ is defined as

dx,¥) = [[X =¥l

Theorem (Properties of the distance function)

Let X,¥,Z € R". Then
1. dX,y) >0
2. d(X,¥) = 0 if and only if X = §.
3. d(Z7) = (7 )
4. d(X,7Z) < d(%,¥) + d(¥,%) (Triangle Inequality II)

Proof. (Proof of the Triangle Inequality IT)

A7) =[x -2 = [IE=9)+F -2l



Definition
If X, ¥ € R", then the distance between X and ¥ is defined as

dx,¥) = [[X =¥l

Theorem (Properties of the distance function)

Let X,¥,Z € R". Then
1. d(X,y) >0
2. d(X,¥) = 0 if and only if X = §.
3. d(%,9) = d(7. %)
4. d(%,Z) < d(%,¥) + d(¥,Z) (Triangle Inequality IT)

Proof. (Proof of the Triangle Inequality IT)

d(%,7) = [|X - 7] I =9)+F -2l

[|X = ¥|| + ||¥ — Z|| by Triangle Inequality I

IN



Definition
If X, ¥ € R", then the distance between X and ¥ is defined as

dx,¥) = [[X =¥l

Theorem (Properties of the distance function)

Let X,¥,Z € R". Then
1. dX,y) >0
2. d(X,¥) = 0 if and only if X = §.
3. d(Z7) = (7 )
4. d(X,7Z) < d(%,¥) + d(¥,%) (Triangle Inequality II)

Proof. (Proof of the Triangle Inequality IT)

dx,7) =[K-7]| = [[K=9)+F -2
[IX — ¥ + ||¥ — Z]| by Triangle Inequality I
d(x,¥) +d(¥,2).

A
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Definitions
» Let X, ¥ € R". We say that two vectors X and ¥y are orthogonal if
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Definitions
» Let X, ¥ € R". We say that two vectors X and ¥ are orthogonal if
X-y=0.
» More generally, X = {X1,X2,...,Xk} € R" is an orthogonal set if each
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Orthogonality

Definitions
» Let X, ¥ € R". We say that two vectors X and ¥ are orthogonal if
X-y=0.
» More generally, X = {X1,X2,...,Xk} € R" is an orthogonal set if each

X; is nonzero, and every pair of distinct vectors of X is orthogonal, i.e.,
Xi-Xj=0foralli#j 1<ij<k.

» Aset X ={X1,X2,...,%} C R" is an orthonormal set if X is an
orthogonal set of unit vectors, i.e., [|Xi|| =1 for all i, 1 <i<k.
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an orthogonal set).
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Examples

1. The standard basis {€1,- - ,&n} of R" is an orthonormal set (and hence
an orthogonal set).

2.
1 1 1
1 1 -1
1| -1 | 1
1 -1 -1

is an orthogonal (but not orthonormal) subset of R?.

3. If {X1,X2,..., X} is an orthogonal subset of R" and p # 0, then

{pX1,pX2,...,pXk} is an orthogonal subset of R".
4.
1 1 1
1 1 1 1 1 —1
2| L2 “tjr2| 1
1 —1 —1

is an orthonormal subset of R*.



Definition

Normalizing an orthogonal set is the process of turning an orthogonal (but

not orthonormal) set into an orthonormal set. If {X;,X2,...,Xx} is an
orthogonal subset of R", then
{ 1 . 1 1 . }
S XL TS X2y T 1 Xk
ol [1%2]] IR

is an orthonormal set.






Problem
Verify that

1 0
-1 ) 2 )
2 1

is an orthogonal set, and normalize this set.



Solution

1 0
-1 2 = 0-242=0,
2 1|
0 [ 5]
2 1 = 04+2-2=0,
1 | -2 |
1 [ 57
-1 1 = 5-1-4=0,
2 | -2 |

proving that the set is orthogonal. Normalizing gives us the orthonormal set

1 0 )
! -1 i2 ! 1

VB o] VB 1] V|




Theorem (Pythagoras’ Theorem)

If {X1,X2,..., X} C R" is orthogonal, then

1K1+ %o - Rel” = [[Fal” + [[Rel* + - + (1Rl



Theorem (Pythagoras’ Theorem)
If {X1,X2,..., X} C R" is orthogonal, then

2

(IR0 + %2+ -+ R * = 1%l + 1R+ -+ IRl

Proof.
Start with

B 4+%+ 4% = @+t +R) FE+Rt+



Theorem (Pythagoras’ Theorem)

If {1, %, ..

Proof.
Start with

[|X1 +§2+---+>?k|\2

., Xk} € R" is orthogonal, then

1K1+ %o - Rel” = [[Fal” + [[Rel* + - + (1Rl

= (X1 X1+ XX+ -+ X1 - Xk)

F(Xo XKy + X Ko 4o Ko - Ry

F(Ri - X + XK R+ R X))

= XX +X X4+ X Xk

FE+R+- %) K +Xe+ -



Theorem (Pythagoras’ Theorem)

If {1, %, ..

Proof.
Start with

[|X1 +§2+---+>?k|\2

., Xk} € R" is orthogonal, then

1K1+ %o - Rel” = [[Fal” + [[Rel* + - + (1Rl

= (X1 X1+ XX+ -+ X1 - Xk)

F(Xo XKy + X Ko 4o Ko - Ry

F(Ri - X + XK R+ R X))
= XX +X X4+ X Xk

= R+ IR+ (15

FE+R+- %) K +Xe+ -



Theorem (Pythagoras’ Theorem)

If {X1,X2,..., X} C R" is orthogonal, then

IR0+ %2+ -+ Rl = 1Rl + [IR2 + -+ |[Ril

Proof.
Start with

[|X1 +)_(‘2+"'+)_('k”2

FE+R+- %) (K + X+ FX)
= (X% +X K4+ KR

F(Xo XKy + X Ko 4o Ko - Ry

F(Ri - X + XK R+ R X))
= XX +X X4+ X Xk
= IRl + Rl - 1%
The second last equality follows from the fact that the set is orthogonal, so

for alliand j,i#jand 1 <i,j <k, X Xj=0. Thus, the only nonzero
terms are the ones of the form X; - X, 1 <1i<k. [ |
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Theorem

If S = {X1,%X2,...,%} C R" is an orthogonal set, then S is independent.
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Form the linear equation: t1X; 4+ toXs + -+ - + tx Xk = 0. We need to check
whether there is only trivial solution.



Orthogonality and Independence

Theorem

If S = {X1,%X2,...,%} C R" is an orthogonal set, then S is independent.

Proof.

Form the linear equation: t1X; + toXa 4+ - - - + tx Xk = 0. We need to check
whether there is only trivial solution. Notice that for all i, 1 <i <k,

0= (t1%1 + taXo + -+ + tic¥) - & = % - % = ;][ ]%,

since t;Xj - X; = 0 for all j, 1 <j <k where j # 1.



Orthogonality and Independence

Theorem

If S = {X1,%X2,...,%} C R" is an orthogonal set, then S is independent.

Proof.
Form the linear equation: t1X; + toXa 4+ - - - + tx Xk = 0. We need to check
whether there is only trivial solution. Notice that for all i, 1 <i <k,

0= (t1X1 + toXo + - + taXi) - X = X - X = ti||>?i\|2,

since t;Xj - X; = 0 for all j, 1 <j <k where j # i. Since X; # 0, and
ti]|%i]]% = 0, it follows that t; = 0 for all i, 1 < i < k. Therefore, S is linearly
independent. |



Example

Given an arbitrary vector

wl
I
m
=
e

it is trivial to express X as a linear combination of the standard basis
n o = S 1.
vectors of R", {&1,€2,...,6n}:

X =a161 + a282 + - -+ + an€n.



Problem

Given any orthogonal basis B of R" (so not necessarily the standard basis),
and an arbitrary vector X € R", how do we express X as a linear
combination of the vectors in B?

X

3
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Fourier Expansion

Theorem (Fourier Expansion)

Let {fh Fz, ceey Fm} be an orthogonal basis of a subspace U of R". Then for

any X € U,
-6\ = -6\ 2\ =
D_(’_(X_, 12>f1+<x_. 22>f2+"'+<x_, 2>fm~
[I£1]] |I£2]] [

This expression is called the Fourier expansion of X, and

are called the Fourier coefficients.



Example

. 1 . 0 - 5 1
Letfi=1| —1 | ,f2=1] 2 |, and f3 = 1 [,andletxX=| 1
2 1 -2 1

We have seen that B = {ﬁ, F27 ?3} is an orthogonal subset of R3.



Example

— 1 - 0 - 5
Letfi=1| —1 | ,f2=1] 2 |, and f3 = 1 |, and let X =
2 1 -2

We have seen that B = {ﬁ, F27 ?3} is an orthogonal subset of R3.

It follows that B is an orthogonal basis of R®. (Why?)



Example

. 1 . 0 - 5 1
Letfi=1| —1 | ,f2=1] 2 |, and f3 = 1 [,andletxX=| 1
2 1 -2 1

We have seen that B = {ﬁ, Fg7 E;} is an orthogonal subset of R3.
It follows that B is an orthogonal basis of R®. (Why?)

To express X as a linear combination of the vectors of B, apply the Fourier
Expansion Theorem. Assume X = t1f1 + tgfg + t3f3



Example

. 1 . 0 - 5 1
Letfi=1| —1 | ,f2=1] 2 |, and f3 = 1 [,andletxX=| 1
2 1 -2 1

We have seen that B = {ﬁ, Fg7 E;} is an orthogonal subset of R3.
It follows that B is an orthogonal basis of R®. (Why?)

To express X as a linear combination of the vectors of B, apply the Fourier
Expansion Theorem. Assume X = t1f; + tofs + tafs. Then

X~f1_2 X~f2:§ and  ts x-f3_4

t1 = — 7t2: = )
Iff[> 6 I2f[> 5

lIfa][> 30



Example

. 1 . 0 - 5 1
Letfi=1| —1 | ,f2=1] 2 |, and f3 = 1 [,andletxX=| 1
2 1 -2 1

We have seen that B = {ﬁ, Fg7 E;} is an orthogonal subset of R3.
It follows that B is an orthogonal basis of R®. (Why?)

To express X as a linear combination of the vectors of B, apply the Fourier
Expansion Theorem. Assume X = t1f; + tofs + tafs. Then

b 2 Xfe 3 e 4
1]z 6 ]2 5 lIfs|> 30
Therefore,
1 1 0 5
Ll=g| 1 +2 ]2+ 1
1 2 1 —2



Proof. (Fourier Expansion)

Let X € U. Since {ﬁ,fz,...,fm} is a basis of U, R = t1Fy 4+ tofy & -+ tmfm
for some t1,t2,...,tm € R.



Proof. (Fourier Expansion)

Let X € U. Since {ﬁ,fz, .. .,fm} is a basis of U, X = t16) & tofe 4 - 4 tufm
for some t1,t2,...,tm € R. Notice that for any i, 1 <i < m,

D_fﬁ = (t1f1 +t2F2+"'+thm)'E



Proof. (Fourier Expansion)

Let X € U. Since {ﬁ,fz,...,fm} is a basis of U, R = t1Fy 4+ tofy & -+ tmfm
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Remark

If {ﬁ, 1?2, . ,fm} is an orthonormal basis, then the Fourier coefficients are
-1,

simply t; = j=12 ..., m.
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Show that B = {ﬁ, £, s, ﬁ} is an orthogonal basis of R*, and express
X = [ a b ¢ d ]T as a linear combination of E,E,Fg and 1?4.
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Let f; = uE fo = uE fs = 1| fq = 1
0 0 1 -1

Show that B = {ﬁ, £, s, ﬁ} is an orthogonal basis of R*, and express
X = [ a b ¢ d ]T as a linear combination of Fl,?;,f_‘;; and 1?4.

Solution

Computingﬁ-ﬂfor1§i<j§4gives us
fi-hp =0 f£-F =0 fi-fi = o0,
f fs = 0, f-f, = 0, fo-f, =

Hence, B is an orthogonal set. It follows that B is independent, and since
IB| = 4 = dim(R?), B also spans R*. Therefore, B is an orthogonal basis of
R*. By the Fourier Expansion Theorem,

. +b) - ~b\ =« +d\ s  [(c—d\=
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